A Traffic Light Approach to Solvency Measurement of Swiss Occupational Pension Funds

Alexander Braun, Przemysław Rymaszewski, and Hato Schmeiser Institute of Insurance Economics, University of St. Gallen, Switzerland

- 1 Introduction
- 2 Model Framework
- 3 Numerical Results
- 4 Conclusion

1 Introduction

- 2 Model Framework
- 3 Numerical Results
- 4 Conclusion

Comprehensive solvency regulation is currently not present for Swiss occupational pension funds

Background

- Great importance of occupational pension funds in Switzerland
- Supervision of Swiss pensions is conducted at the cantonal level (pension expert report)
- Comprehensive solvency regulation is not present for Swiss occupational pension funds
- Common pension fund models have not been considered for solvency measurement yet

Contributions

- Proposition of a compact solvency framework for occupational pension funds
- Stochastic pension fund model and traffic light approach instead of regulatory capital
- Sensitivity analysis identifies important drivers of the traffic light probabilities
- Supervisory review process and notes with regard to an introduction in Switzerland

- 1 Introduction
- 2 Model Framework
- 3 Numerical Results
- 4 Conclusion

Under the assumption of normally distributed asset returns, a closed form solution can be derived

A: Assets L: Liabilities C: Contributions RC: Regular Contributions AC: Additional Contributions B: Benefits r: Return on Asset Portfolio σ: Volatility of Asset Returns see, e.g., Cairns and Parker, 1997; Dufresne 1988, 1989,1990

$$\hat{A}_1 = \exp(\tilde{r}_1) \left(A_0 + C_0 - B_0 \right)$$

 $L_1 = \exp(i_{tec}) \left(L_0 + RC_0 - B_0 \right)$

$$E\left[\tilde{A}_{1}\right] = E\left[\exp\left(\tilde{r}_{1}\right)\left(A_{0} + C_{0} - B_{0}\right)\right],$$

$$= \exp\left(E\left[\tilde{r}_{1}\right] + \frac{\sigma^{2}\left[\tilde{r}_{1}\right]}{2}\right)\left(A_{0} + C_{0} - B_{0}\right)$$

$$\operatorname{var}\left[\tilde{A}_{1}\right] = \operatorname{var}\left[\exp\left(\tilde{r}_{1}\right)\left(A_{0} + C_{0} - B_{0}\right)\right],$$

$$= \left(A_{0} + C_{0} - B_{0}\right)^{2}\exp\left(2E\left[\tilde{r}_{1}\right] + \sigma^{2}\left[\tilde{r}_{1}\right]\right)\left[\exp\left(\sigma^{2}\left[\tilde{r}_{1}\right]\right) - 1\right]$$

Traffic light signals can be derived with regard to underfunding / default probabilities

asset value

Institute of Insurance Economics

 $\begin{array}{ll} \mbox{green} & Prob\left(\tilde{A}_{1} \leq L_{1}\right) \leq \psi_{\rm underfunding} \\ \mbox{yellow} & Prob\left(\tilde{A}_{1} + AC_{1}^{max} \leq L_{1}\right) \leq \psi_{\rm default} \\ \mbox{red} & Prob\left(\tilde{A}_{1} + AC_{1}^{max} \leq L_{1}\right) > \psi_{\rm default} \end{array}$

The model can be easily calibrated

Source of data	Data	Application
Public data	 Distribution of the specific asset classes Correlation structures 	 Determination of the joint asset distribution Estimated either by the supervisor or by the pension funds themselves
Asset management	 Composition of the asset portfolio 	 Determination of the joint asset distribution
Interior actuarial estimates	 Amount of the actuarial liabilities 	 Determination of the pension fund's liabilities Sensitivity analysis to minimize forecast error

Potential supervisory actions given compliance with the respective underfunding / default probabilities

- 1 Introduction
- 2 Model Framework
- 3 Numerical Results
- 4 Conclusion

Numerical example (I/III)

- · Based on 2007 average figures from the Swisscanto (2008) pension fund survey
- Analysis of 265 occupational pension funds in Switzerland

	Input		Asset Allocation
A_{0}/L_{0}	110%	Bonds (intl.)	13%
A_0	11'000	Bonds (CH)	27%
L_0	10'000	Stocks (intl.)	18%
C_0	1'000	Stocks (CH)	10%
RC_0	1'000	Real Estate	15%
AC_0	-	Alternatives	7%
B_0	750	Cash	10%
i_{tec}	4%		

Institute of Insurance Economics

Figure 2: Sensitivity analysis for the actual coverage ratio

Alexander Braun, Przemysław Rymaszewski, and Hato Schmeiser, A Traffic Light Approach to Solvency Measurement of Swiss Occupational Pension Funds, WRIEC Singapore, July 2010

Figure 3: Sensitivity analysis for the technical liabilities

Supervisor's acceptance for underfunding is a central issue

Alexander Braun, Przemysław Rymaszewski, and Hato Schmeiser, A Traffic Light Approach to Solvency Measurement of Swiss Occupational Pension Funds, WRIEC Singapore, July 2010

Figure 5: Sensitivity analysis for the actual and lowest coverage ratio acceptable by the supervisor (yellow condition)

- 1 Introduction
- 2 Model Framework
- 3 Numerical Results
- 4 Conclusion

Findings

- Closed-form solution can be derived for normally distributed asset returns
- Simple calibration and implementation of the model (illustrated with a small sample of funds)
- Asset allocation, coverage ratio, and the regulatory tolerance for uncovered liabilities are identified as important drivers of the probabilities for the traffic light conditions

Conclusion

- Due to its simplicity the model is well suited as a regulatory standard model
- Different distributional assumptions could be discussed for the modeled asset classes
- Credit risk could be additionally accounted using Basel II standard approach
- Implementation would need to be preceded by a comprehensive quantitative impact study

Thank you for your attention!

Institute of Insurance Economics

Alexander Braun, Przemysław Rymaszewski, and Hato Schmeiser, A Traffic Light Approach to Solvency Measurement of Swiss Occupational Pension Funds, WRIEC Singapore, July 2010

- Cairns, A. J. G. and G. Parker, 1997. Stochastic Pension Fund Modelling. Insurance: Mathematics and Economics, 21(1):43–79.
- Dufresne, D., 1988. Moments of Pension Contributions and Fund Levels When Rates of Return are Random. Journal of the Institute of Actuaries, 115:535–544.
- Dufresne, D., 1989. Stability of Pension Systems When Rates of Return are Random. Insurance: Mathematics and Economics, 8(1):71–76.
- Dufresne, D., 1990. The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding. Scandinavian Actuarial Journal, 9:39–79.

Swisscanto, 2008. Schweizer Pensionskassen. URL http://www.swisscanto.ch/ch/en.

• The full working paper, A Traffic Light Approach to Solvency Measurement of Swiss Occupational Pension Funds, can be found online:

http://www.ivw.unisg.ch/org/ivw/web.nsf/SysWebRessources/WP74/\$FILE/WP74.pdf

• Contact:

—	Alexander Braun	alexander.braun@unisg.ch	+41 71 243 4093
_	Przemysław Rymaszewski	przemyslaw.rymaszewski@unisg.ch	+41 71 243 4091
_	Hato Schmeiser	hato.schmeiser@unisg.ch	+41 71 243 4011

Institute of Insurance Economics (I.VW-HSG) University of St. Gallen Kirchlistrasse 2 CH-9010 St. Gallen phone +41 71 243 40 43 fax +41 71 243 40 40 www.ivw.unisg.ch